Skip to contents

Summary of Milestone Time from Simulated Trials

Usage

summarizeMilestoneTime(output)

Arguments

output

a data frame. It assumes that triggering time of milestones are store in columns milestone_time_<...>. It can be data frames returned by controller$get_output().

Value

A data frame of class milestone_time_summary.

Examples


# a minimum, meaningful, and executable example,
# where a randomized trial with two arms is simulated and analyzed.

control <- arm(name = 'control arm')
active <- arm(name = 'active arm')

pfs_in_control <- endpoint(name = 'PFS', type = 'tte', generator = rexp, rate = log(2) / 5)
control$add_endpoints(pfs_in_control)

pfs_in_active <- endpoint(name = 'PFS', type = 'tte', generator = rexp, rate = log(2) / 6)
active$add_endpoints(pfs_in_active)

accrual_rate <- data.frame(end_time = c(10, Inf), piecewise_rate = c(30, 50))
trial <- trial(name = 'trial',
               n_patients = 1000,
               duration = 40,
               enroller = StaggeredRecruiter,
               accrual_rate = accrual_rate,
               dropout = rweibull, shape = 2, scale = 38,
               silent = TRUE)

trial$add_arms(sample_ratio = c(1, 1), control, active)

action_at_final <- function(trial, milestone_name){
  locked_data <- trial$get_locked_data(milestone_name)
  fitLogrank(Surv(PFS, PFS_event) ~ arm, placebo = 'control arm',
             data = locked_data, alternative = 'less')
  invisible(NULL)
}

final <- milestone(name = 'final analysis',
                   action = action_at_final,
                   when = eventNumber(endpoint = 'PFS', n = 300))

listener <- listener(silent = TRUE)
listener$add_milestones(final)

controller <- controller(trial, listener)
controller$run(n = 10, plot_event = FALSE, silent = TRUE)

output <- controller$get_output()
time <- summarizeMilestoneTime(output)
time
#>        milestone     mean   median       sd  n
#> 1 final analysis 15.88651 15.85284 0.197101 10

plot(time)