Define one or multiple endpoints. This is a user-friendly wrapper for
the class constructor Endpoint$new
. Users who are not familiar with
the concept of classes may consider using this wrapper directly.
wrapper if
Usage
endpoint(name, type = c("tte", "non-tte"), readout = NULL, generator, ...)
Arguments
- name
character vector. Name(s) of endpoint(s)
- type
character vector. Type(s) of endpoint(s). It supports
"tte"
for time-to-event endpoints, and"non-tte"
for all other types of endpoints (e.g., continous, binary, categorical, or repeated measurement.TrialSimulator
will do some verification if an endpoint is of type"tte"
. However, no special manipulation is done for non-tte endpoints.- readout
numeric vector with name to be the non-tte endpoint(s).
readout
should be specified for every non-tte endpoint. For example,c(endpoint1 = 6, endpoint2 = 3)
. If all endpoints are tte,readout
can beNULL
.- generator
a RNG function. Its first argument must be `n`, number of patients. It must return a data frame of `n` rows. It support all built-in random number generators in
stats
, e.g.,stats::rnorm
,stats::rexp
, etc. that withn
as the argument for number of observations.generator
could be any custom functions as long as (1) its first argument isn
; and (2) it returns a vector of lengthn
or a data frame ofn
rows. Custom random number generator can return data of more than one endpoint. This is useful when users need to simulate correlated endpoints. The column names of returned data frame should match toname
exactly. If an endpoint is of type"tte"
, the customgenerator
should also return a column as event indicator. For example, if"pfs"
is"tte"
, then customgenerator
should return at least two columns"pfs"
and"pfs_event"
. Usuallypfs_event
can be all 1s if no censoring. Censoring can be specified later when defining theTrial
through argumentdropout
. See?Trial
. Note that if covariates, e.g., biomarker, subgroup, are needed in generating and analyzing trial data, they can be defined asEndpoint
as well.- ...
optional arguments for
generator
.
Examples
set.seed(12345)
## Example 1. Generate a time-to-event endpoint.
## Two columns are returned, one for time, one for event (1/0, 0 for
## A built-in RNG function is used to handle piecewise constant exponential
## distribution
risk <- data.frame(
end_time = c(1, 10, 26.0, 52.0),
piecewise_risk = c(1, 1.01, 0.381, 0.150) * exp(-3.01)
)
pfs <- endpoint(name = 'pfs', type='tte',
generator = PiecewiseConstantExponentialRNG,
risk = risk, endpoint_name = 'pfs')
pfs$get_generator()
#> generator :
#> $risk
#> end_time piecewise_risk
#> 1 1 0.049291679
#> 2 10 0.049784596
#> 3 26 0.018780130
#> 4 52 0.007393752
#>
#> $endpoint_name
#> [1] "pfs"
#>
## Example 2. Generate continuous and binary endpoints using R's built-in
## RNG functions, e.g. rnorm, rexp, rbinom, etc.
ep1 <- endpoint(
name = 'cd4', type = 'non-tte', generator = rnorm, readout = c(cd4=1),
mean = 1.2)
ep2 <- endpoint(
name = 'resp_time', type = 'non-tte', generator = rexp, readout = c(resp_time=0),
rate = 4.5)
ep3 <- endpoint(
name = 'orr', type = 'non-tte', readout = c(orr=3), generator = rbinom,
size = 1, prob = .4)
mean(ep1$get_generator()(1e4)[, 1]) # compared to 1.2
#> [1] 1.199141
sd(ep1$get_generator()(1e4)[, 1]) # compared to 1.0
#> [1] 0.9865558
log(2) / median(ep2$get_generator()(1e4)[, 1]) # compared to 4.5
#> [1] 4.554779
mean(ep3$get_generator()(1e4)[, 1]) # compared to 0.4
#> [1] 0.3961
## print summary reports for endpoint objects in console
# ep1
# ep2
# ep3
## An example of piecewise constant exponential random number generator
## Baseline hazards are piecewise constant
## Hazard ratios are piecewise constant, resulting a delayed effect.
run <- TRUE
if (!requireNamespace("survminer", quietly = TRUE)) {
run <- FALSE
message("Please install 'survminer' to run this example.")
}
if (!requireNamespace("survival", quietly = TRUE)) {
run <- FALSE
message("Please install 'survival' to run this example.")
}
if(run){
risk1 <- risk
ep1 <- endpoint(
name = 'pfs', type='tte',
generator = PiecewiseConstantExponentialRNG,
risk=risk1, endpoint_name = 'pfs')
risk2 <- risk1
risk2$hazard_ratio <- c(1, 1, .6, .4)
ep2 <- endpoint(
name = 'pfs', type='tte',
generator = PiecewiseConstantExponentialRNG,
risk=risk2, endpoint_name = 'pfs')
n <- 1000
tte <- rbind(ep1$get_generator()(n), ep2$get_generator()(n))
arm <- rep(0:1, each = n)
dat <- data.frame(tte, arm)
sfit <- survival::survfit(
survival::Surv(time = pfs, event = pfs_event) ~ arm, dat)
survminer::ggsurvplot(sfit,
data = dat,
pval = TRUE, # Show p-value
conf.int = TRUE, # Show confidence intervals
risk.table = TRUE, # Add risk table
palette = c("blue", "red"))
## print summary reports for endpoint objects in console
# ep1
# ep2
}